Spatiotemporal slope stability analytics for failure estimation (SSSAFE): linking radar data to the fundamental dynamics of granular failure

Title:

Spatiotemporal slope stability  analytics for failure estimation  (SSSAFE): linking radar data  to the fundamental dynamics  of granular failure

Journal:

Nature Research, 2021, 11:9729

Authors:

Antoinette Tordesillas*, Sanath Kahagalage, Lachlan Campbell, Pat Bellett, Emanuele Intrieri, Robin Batterham

Abstract: 

Impending catastrophic failure of granular earth slopes manifests distinct kinematic patterns in space and time. While risk assessments of slope failure hazards have routinely relied on the monitoring of ground motion, such precursory failure patterns remain poorly understood. A key challenge is the multiplicity of spatiotemporal scales and dynamical regimes. In particular, there exist a precursory failure regime where two mesoscale mechanisms coevolve, namely, the preferred transmission paths for force and damage. Despite extensive studies, a formulation which can address their coevolution not just in laboratory tests but also in large, uncontrolled feld environments has proved elusive. Here we address this problem by developing a slope stability analytics framework which uses network fow theory and mesoscience to model this coevolution and predict emergent kinematic clusters solely from surface ground motion data. We test this framework on four data sets: one at the laboratory scale using individual grain displacement data; three at the feld scale using line-of-sight displacement of a slope surface, from ground-based radar in two mines and from space-borne radar for the 2017 Xinmo landslide. The dynamics of the kinematic clusters deliver an early prediction of the geometry, location and time of failure.

Link:

https://doi.org/10.1038/s41598-021-88836-x

BY Antoinette Tordesillas, Sanath Kahagalage, Lachlan Campbell, Pat Bellett, Emanuele Intrieri, Robin Batterham
DATE 2021-09-03 11:24:49
Contact us
  • Tel.: 86-10-62551358
  • E-mail: emms@ipe.ac.cn
  • Add.: 1 North 2nd Street,
    Zhongguancun, Haidian District,
    Beijing 100190, PR China
Copyright 2009 by Institute of Process Engineering, Chinese Academy of Sciences